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EMPIRICAL MODELING OF THE THERMOSPHERE: AN OVERVIEW

A. Hedin, NASA/Goddard Space Flight Center

Hedin gave a summary of thermospheric density modeling
history and standard atmospheres. In particular, he compared
and contrasted the approaches of the Jacchia and MSIS models.
His conclusions were that the Jacchia models are best if drag is
the primary concern. MSIS is superior for variations in
composition and temperature variations and comparison with
theoretical models is facilitated by the use of spherical
harmonics, which also provide a simple and consistent way of
obtaining simplifications.

ADVANTAGES/DISADVANTAGES

1. Jacchia

a. Theoretically best if drag is primary quantity
desired without high resolution and for satellite
geometries and orbits similar to those used in
generating the model. However, drag coefficients
used in density derivation need to be more
carefully specified if original drag is to be
reproduced. Inaccurate specification of compo-
sition (e.g. He bulge) may result in inaccurate
drag.

b. Absolute total density dependent on the drag
coefficient rather than the instrument
calibration. However, dependence of drag
coefficients on composition and extreme
geometries may be a problem. Model predictions of
composition and temperature are derived from
auxiliary data or assumptions and may not be
realistic.

c. Formulation has particular difficulty coping with
minor constituent variations found by mass
spectrometers and cumbersome pseudotemperatures
of J77 help only a little.

2 MSIS
a. Best for composition/temperature variations, but
agrees with drag models in overall averages.
b. Provides better resolution of variations

(including total density) in local time, etc.
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Absolute densities dependent on individual
calibration constants for contributing instruments

but model accuracy should be better than that of
an individual instrument.

Spherical harmonics facilitate systematic
increase in model resolution and comparison with
theoretical models. Similarly, complexity can be

reduced if desired by dropping higher harmonics
or unneeded effects.
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Historical Development of Empirical Thermosphere Models
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A.‘

B.

MODEL DEVELOPMENT

Jacchia
1. J65

a. Earliest comprehensive model based on drag. Lower boundary at 120
km.

b. Static height profiles as function of exospheric temperature
assuming hydrostatie/diffusive equilibrium.

c. First to include four principal effects (diurnal/seasonal,
semiannual, solar activity, magnetic activity) using ad hoc
formulas for exospheric temperature to fill gaps.

d. Introduced Bates type temperature profile (which can be integrated
explicitly).

2. J70 & M

a. Lower boundary at 90 km and more complicated temperature profile
requiring numerical integration.

b. Refinements and expansions of ad hoc formulas.

¢. Included factor of three winter helium bulge.

d. JT! raised atomic oxygen at 150 im over J70.

3. J17

a. Inclusion of some results from mass spectrometers.

b. Magnetic coordinates for magnetic activity effects.

¢. Composition phase through pseudo-temperatures.

0GO-6/MSIS
1. 0GO-6 (1974)

a. Earliest comprehensive model based on mass spectrometer data.

b. Bates temperature profile above 120 im.

¢. Spherical harmonics for geographical/local time coordinates.

d. Variable boundary at 120 km for He and O to represent phase
differences between constituents. Height profiles assuming
hydrostatic/diffusive equilibrium.

e. Temperature inferred from N2 agreed well with incoherent scatter.

2. MSIS 77

a. Same format as 0GO-6.

b. Used mass spectrometer density data from five satellites and
temperatures from four incoherent scatter stations.

c. Variable boundary also for N2 so temperature depends on incoherent
scatter and N2 scale heights.

3. MSIS 79

a. Introduced UT/Longitude variations for quiet and magnetic active
times (alternative to magnetic coordinates). Temperature maximum
and He minimum near magnetic pole.

4, MSIs 83

a. Density and temperature data from mass spectrometers on seven
satellites, from five IS stations, and from rockets.

b. Extended profiles below 120 km to 85 km using analytically
integrable temperature profiles.

c. Includes major variations in temperature and density below 120 im.

d. Improved resolution {n prediction of magnetic activity variations
using time history of 3hr indicies.
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Latitudinal variation of n(He) at 1000 kin altitude. The left
part corresponds to F=F =150 x 10722 w m‘2 Hz—!
= 2. The right part corresponds to F = F=92x

10-22 W m—2 Hz~!

and K
Jacchia 1971 and MSIS models.
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Table 4a. Density Ratio to MSIS~-83 for N;, 0, and He.

Ny 0 He
Data Sat altitude avg sd pts avg sd pts avg sd pts
0Go-6 (MS) 400~-700 1.08 .27 659 1.15 .16 1276 1.18 .19 902
San Marco-3 (M) 190-250 1.10 .20 77 .86 .15 24 1.09 .17 4l
Asros-A NATE (M3) 200~-500 1.13 .47 321 1.14 .33 478 1.18 .42 466
AE-C NATE (MS) 190~400 1.13 .33 640 .91 .18 866 .68 .18 855
AE~C 0SS (MS) 135-160+ .97 .15 440
AE-C 0SS (MS) 190-400 1.02 .26 319 1.08 .18 387 1.03 .23 1371
AE-D 0SS (MS) 140-160+ .99 .16 184
AE-D 0SS (MS) 190~-400 .87 .33 99 1.0l .18 107 .78 .22 107
AE-E NACE (MS) 140-160+ 1.01 .13 815
AE~-E NACE (15) 190-450 1.00 .22 701 .87 .18 1019 <93 .17 1002
ESRO~4 (MS) 200~-350 .88 .33 427 .83 .24 587 .84 .30 518
Rockects (MS) 100~120 .83 .36 35
Rockets (MS) 110-160 .92 .30 28
Rockets (MS) 190~-300 .90 .32 39
Arecibo (1S) 100-120 .92 .32 228
Arecibo (IS) 110-135 1.14 .51 109
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